Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Regulation of the nitrogen transfer pathway in the arbuscular mycorrhizal symbiosis: gene characterization and the coordination of expression with nitrogen flux.

Identifieur interne : 002630 ( Main/Exploration ); précédent : 002629; suivant : 002631

Regulation of the nitrogen transfer pathway in the arbuscular mycorrhizal symbiosis: gene characterization and the coordination of expression with nitrogen flux.

Auteurs : Chunjie Tian [États-Unis] ; Beth Kasiborski ; Raman Koul ; Peter J. Lammers ; Heike Bücking ; Yair Shachar-Hill

Source :

RBID : pubmed:20448102

Descripteurs français

English descriptors

Abstract

The arbuscular mycorrhiza (AM) brings together the roots of over 80% of land plant species and fungi of the phylum Glomeromycota and greatly benefits plants through improved uptake of mineral nutrients. AM fungi can take up both nitrate and ammonium from the soil and transfer nitrogen (N) to host roots in nutritionally substantial quantities. The current model of N handling in the AM symbiosis includes the synthesis of arginine in the extraradical mycelium and the transfer of arginine to the intraradical mycelium, where it is broken down to release N for transfer to the host plant. To understand the mechanisms and regulation of N transfer from the fungus to the plant, 11 fungal genes putatively involved in the pathway were identified from Glomus intraradices, and for six of them the full-length coding sequence was functionally characterized by yeast complementation. Two glutamine synthetase isoforms were found to have different substrate affinities and expression patterns, suggesting different roles in N assimilation. The spatial and temporal expression of plant and fungal N metabolism genes were followed after nitrate was added to the extraradical mycelium under N-limited growth conditions using hairy root cultures. In parallel experiments with (15)N, the levels and labeling of free amino acids were measured to follow transport and metabolism. The gene expression pattern and profiling of metabolites involved in the N pathway support the idea that the rapid uptake, translocation, and transfer of N by the fungus successively trigger metabolic gene expression responses in the extraradical mycelium, intraradical mycelium, and host plant.

DOI: 10.1104/pp.110.156430
PubMed: 20448102
PubMed Central: PMC2899933


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Regulation of the nitrogen transfer pathway in the arbuscular mycorrhizal symbiosis: gene characterization and the coordination of expression with nitrogen flux.</title>
<author>
<name sortKey="Tian, Chunjie" sort="Tian, Chunjie" uniqKey="Tian C" first="Chunjie" last="Tian">Chunjie Tian</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA. tiancj@msu.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824</wicri:regionArea>
<orgName type="university">Université d'État du Michigan</orgName>
<placeName>
<settlement type="city">East Lansing</settlement>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kasiborski, Beth" sort="Kasiborski, Beth" uniqKey="Kasiborski B" first="Beth" last="Kasiborski">Beth Kasiborski</name>
</author>
<author>
<name sortKey="Koul, Raman" sort="Koul, Raman" uniqKey="Koul R" first="Raman" last="Koul">Raman Koul</name>
</author>
<author>
<name sortKey="Lammers, Peter J" sort="Lammers, Peter J" uniqKey="Lammers P" first="Peter J" last="Lammers">Peter J. Lammers</name>
</author>
<author>
<name sortKey="Bucking, Heike" sort="Bucking, Heike" uniqKey="Bucking H" first="Heike" last="Bücking">Heike Bücking</name>
</author>
<author>
<name sortKey="Shachar Hill, Yair" sort="Shachar Hill, Yair" uniqKey="Shachar Hill Y" first="Yair" last="Shachar-Hill">Yair Shachar-Hill</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20448102</idno>
<idno type="pmid">20448102</idno>
<idno type="doi">10.1104/pp.110.156430</idno>
<idno type="pmc">PMC2899933</idno>
<idno type="wicri:Area/Main/Corpus">002674</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002674</idno>
<idno type="wicri:Area/Main/Curation">002674</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002674</idno>
<idno type="wicri:Area/Main/Exploration">002674</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Regulation of the nitrogen transfer pathway in the arbuscular mycorrhizal symbiosis: gene characterization and the coordination of expression with nitrogen flux.</title>
<author>
<name sortKey="Tian, Chunjie" sort="Tian, Chunjie" uniqKey="Tian C" first="Chunjie" last="Tian">Chunjie Tian</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA. tiancj@msu.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824</wicri:regionArea>
<orgName type="university">Université d'État du Michigan</orgName>
<placeName>
<settlement type="city">East Lansing</settlement>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kasiborski, Beth" sort="Kasiborski, Beth" uniqKey="Kasiborski B" first="Beth" last="Kasiborski">Beth Kasiborski</name>
</author>
<author>
<name sortKey="Koul, Raman" sort="Koul, Raman" uniqKey="Koul R" first="Raman" last="Koul">Raman Koul</name>
</author>
<author>
<name sortKey="Lammers, Peter J" sort="Lammers, Peter J" uniqKey="Lammers P" first="Peter J" last="Lammers">Peter J. Lammers</name>
</author>
<author>
<name sortKey="Bucking, Heike" sort="Bucking, Heike" uniqKey="Bucking H" first="Heike" last="Bücking">Heike Bücking</name>
</author>
<author>
<name sortKey="Shachar Hill, Yair" sort="Shachar Hill, Yair" uniqKey="Shachar Hill Y" first="Yair" last="Shachar-Hill">Yair Shachar-Hill</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biological Transport (drug effects)</term>
<term>Cloning, Molecular (MeSH)</term>
<term>Daucus carota (microbiology)</term>
<term>Gene Expression Regulation, Fungal (drug effects)</term>
<term>Genes, Fungal (genetics)</term>
<term>Genetic Complementation Test (MeSH)</term>
<term>Glomeromycota (enzymology)</term>
<term>Glomeromycota (genetics)</term>
<term>Glomeromycota (metabolism)</term>
<term>Glutamate Synthase (genetics)</term>
<term>Glutamate Synthase (metabolism)</term>
<term>Isoenzymes (genetics)</term>
<term>Isoenzymes (metabolism)</term>
<term>Metabolic Networks and Pathways (drug effects)</term>
<term>Models, Biological (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mycelium (drug effects)</term>
<term>Mycelium (metabolism)</term>
<term>Mycorrhizae (drug effects)</term>
<term>Mycorrhizae (enzymology)</term>
<term>Mycorrhizae (genetics)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Nitrogen (metabolism)</term>
<term>Nitrogen (pharmacology)</term>
<term>Saccharomyces cerevisiae (cytology)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Symbiosis (drug effects)</term>
<term>Symbiosis (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Azote (métabolisme)</term>
<term>Azote (pharmacologie)</term>
<term>Clonage moléculaire (MeSH)</term>
<term>Daucus carota (microbiologie)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Glomeromycota (enzymologie)</term>
<term>Glomeromycota (génétique)</term>
<term>Glomeromycota (métabolisme)</term>
<term>Glutamate synthase (génétique)</term>
<term>Glutamate synthase (métabolisme)</term>
<term>Gènes fongiques (génétique)</term>
<term>Isoenzymes (génétique)</term>
<term>Isoenzymes (métabolisme)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Mycelium (effets des médicaments et des substances chimiques)</term>
<term>Mycelium (métabolisme)</term>
<term>Mycorhizes (effets des médicaments et des substances chimiques)</term>
<term>Mycorhizes (enzymologie)</term>
<term>Mycorhizes (génétique)</term>
<term>Mycorhizes (métabolisme)</term>
<term>Régulation de l'expression des gènes fongiques (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (cytologie)</term>
<term>Saccharomyces cerevisiae (effets des médicaments et des substances chimiques)</term>
<term>Symbiose (effets des médicaments et des substances chimiques)</term>
<term>Symbiose (génétique)</term>
<term>Test de complémentation (MeSH)</term>
<term>Transport biologique (effets des médicaments et des substances chimiques)</term>
<term>Voies et réseaux métaboliques (effets des médicaments et des substances chimiques)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glutamate Synthase</term>
<term>Isoenzymes</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Biological Transport</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Metabolic Networks and Pathways</term>
<term>Mycelium</term>
<term>Mycorrhizae</term>
<term>Saccharomyces cerevisiae</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Mycelium</term>
<term>Mycorhizes</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Saccharomyces cerevisiae</term>
<term>Symbiose</term>
<term>Transport biologique</term>
<term>Voies et réseaux métaboliques</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Glomeromycota</term>
<term>Mycorhizes</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Glomeromycota</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Genes, Fungal</term>
<term>Glomeromycota</term>
<term>Mycorrhizae</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glomeromycota</term>
<term>Glutamate synthase</term>
<term>Gènes fongiques</term>
<term>Isoenzymes</term>
<term>Mycorhizes</term>
<term>Symbiose</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Glomeromycota</term>
<term>Glutamate Synthase</term>
<term>Isoenzymes</term>
<term>Mycelium</term>
<term>Mycorrhizae</term>
<term>Nitrogen</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Daucus carota</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Daucus carota</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Azote</term>
<term>Glomeromycota</term>
<term>Glutamate synthase</term>
<term>Isoenzymes</term>
<term>Mycelium</term>
<term>Mycorhizes</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Azote</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Nitrogen</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cloning, Molecular</term>
<term>Genetic Complementation Test</term>
<term>Models, Biological</term>
<term>Molecular Sequence Data</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Clonage moléculaire</term>
<term>Données de séquences moléculaires</term>
<term>Modèles biologiques</term>
<term>Test de complémentation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The arbuscular mycorrhiza (AM) brings together the roots of over 80% of land plant species and fungi of the phylum Glomeromycota and greatly benefits plants through improved uptake of mineral nutrients. AM fungi can take up both nitrate and ammonium from the soil and transfer nitrogen (N) to host roots in nutritionally substantial quantities. The current model of N handling in the AM symbiosis includes the synthesis of arginine in the extraradical mycelium and the transfer of arginine to the intraradical mycelium, where it is broken down to release N for transfer to the host plant. To understand the mechanisms and regulation of N transfer from the fungus to the plant, 11 fungal genes putatively involved in the pathway were identified from Glomus intraradices, and for six of them the full-length coding sequence was functionally characterized by yeast complementation. Two glutamine synthetase isoforms were found to have different substrate affinities and expression patterns, suggesting different roles in N assimilation. The spatial and temporal expression of plant and fungal N metabolism genes were followed after nitrate was added to the extraradical mycelium under N-limited growth conditions using hairy root cultures. In parallel experiments with (15)N, the levels and labeling of free amino acids were measured to follow transport and metabolism. The gene expression pattern and profiling of metabolites involved in the N pathway support the idea that the rapid uptake, translocation, and transfer of N by the fungus successively trigger metabolic gene expression responses in the extraradical mycelium, intraradical mycelium, and host plant.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20448102</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>10</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>153</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2010</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Regulation of the nitrogen transfer pathway in the arbuscular mycorrhizal symbiosis: gene characterization and the coordination of expression with nitrogen flux.</ArticleTitle>
<Pagination>
<MedlinePgn>1175-87</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.110.156430</ELocationID>
<Abstract>
<AbstractText>The arbuscular mycorrhiza (AM) brings together the roots of over 80% of land plant species and fungi of the phylum Glomeromycota and greatly benefits plants through improved uptake of mineral nutrients. AM fungi can take up both nitrate and ammonium from the soil and transfer nitrogen (N) to host roots in nutritionally substantial quantities. The current model of N handling in the AM symbiosis includes the synthesis of arginine in the extraradical mycelium and the transfer of arginine to the intraradical mycelium, where it is broken down to release N for transfer to the host plant. To understand the mechanisms and regulation of N transfer from the fungus to the plant, 11 fungal genes putatively involved in the pathway were identified from Glomus intraradices, and for six of them the full-length coding sequence was functionally characterized by yeast complementation. Two glutamine synthetase isoforms were found to have different substrate affinities and expression patterns, suggesting different roles in N assimilation. The spatial and temporal expression of plant and fungal N metabolism genes were followed after nitrate was added to the extraradical mycelium under N-limited growth conditions using hairy root cultures. In parallel experiments with (15)N, the levels and labeling of free amino acids were measured to follow transport and metabolism. The gene expression pattern and profiling of metabolites involved in the N pathway support the idea that the rapid uptake, translocation, and transfer of N by the fungus successively trigger metabolic gene expression responses in the extraradical mycelium, intraradical mycelium, and host plant.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tian</LastName>
<ForeName>Chunjie</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA. tiancj@msu.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kasiborski</LastName>
<ForeName>Beth</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Koul</LastName>
<ForeName>Raman</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lammers</LastName>
<ForeName>Peter J</ForeName>
<Initials>PJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bücking</LastName>
<ForeName>Heike</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shachar-Hill</LastName>
<ForeName>Yair</ForeName>
<Initials>Y</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>GU111909</AccessionNumber>
<AccessionNumber>GU111910</AccessionNumber>
<AccessionNumber>GU111911</AccessionNumber>
<AccessionNumber>GU111912</AccessionNumber>
<AccessionNumber>GU111913</AccessionNumber>
<AccessionNumber>GU111914</AccessionNumber>
<AccessionNumber>GU111915</AccessionNumber>
<AccessionNumber>GU111916</AccessionNumber>
<AccessionNumber>GU111917</AccessionNumber>
<AccessionNumber>GU111918</AccessionNumber>
<AccessionNumber>GU111919</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>05</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007527">Isoenzymes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.4.1.13</RegistryNumber>
<NameOfSubstance UI="D005970">Glutamate Synthase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003001" MajorTopicYN="N">Cloning, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018552" MajorTopicYN="N">Daucus carota</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="Y">Gene Expression Regulation, Fungal</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005800" MajorTopicYN="N">Genes, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005816" MajorTopicYN="N">Genetic Complementation Test</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055137" MajorTopicYN="N">Glomeromycota</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005970" MajorTopicYN="N">Glutamate Synthase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007527" MajorTopicYN="N">Isoenzymes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053858" MajorTopicYN="Y">Metabolic Networks and Pathways</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025282" MajorTopicYN="N">Mycelium</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>5</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>5</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>10</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20448102</ArticleId>
<ArticleId IdType="pii">pp.110.156430</ArticleId>
<ArticleId IdType="doi">10.1104/pp.110.156430</ArticleId>
<ArticleId IdType="pmc">PMC2899933</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Anal Biochem. 1999 May 15;270(1):41-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10328763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Biochim Pol. 1999;46(2):391-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10547040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2000 Jan;24(1):67-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10640599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2000 Jun;182(11):3158-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10809695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Nov;124(3):949-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11080273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Sep 20;413(6853):297-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11565029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2001 Oct;183(20):5826-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11566979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2001 Dec;9(12):1153-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11738042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2001 Dec 25;40(51):15570-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11747432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Jan;47(2):411-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12519192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2003 Mar;38(2):175-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12620254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2003 Jul 15;373(Pt 2):357-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12683951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2004 May;41(5):542-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15050543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 2004 Apr;50(4):251-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15213749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2005 Jan 1;385(Pt 1):21-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15355308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2004 Nov;45(11):1640-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15574840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2005 Jan 11;1681(2-3):107-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15627502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jun 9;435(7043):819-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15944705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Dec;168(3):687-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16313650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Dec;168(3):697-706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16313651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1991 Jul 15;199(2):325-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1649049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Jul;99(3):938-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2006 Jun;11(6):263-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16697245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2006 Sep;43(9):630-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16698294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jun;144(2):782-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17142485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2007 Apr;111(Pt 4):493-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17512708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2008 Jan;69(1):18-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17706733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;177(3):586-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18211473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2008 May;67(1-2):89-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18288574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(13):3563-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18757491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jan;149(1):549-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18978070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2009 Mar;19(3):143-148</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19125303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009 Jan 22;9:10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19161626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 May;150(1):73-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19329566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5872-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2062864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1989 Jun;217(2-3):370-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2570348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Rev. 1989 Mar;53(1):85-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2651866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1988 Feb;13(2):113-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2897249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Rev. 1986 Sep;50(3):280-313</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2945985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 1996 Jun;133(2):273-280</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29681069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1986 Apr;203(1):110-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3012277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Rev. 1988 Jun;52(2):248-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3045517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1987 Jun 19;49(6):805-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3555844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1983 Jan 10;258(1):119-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6129248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1982 Nov;243(5):C212-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6814260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1980 Nov;144(2):836-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7430074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1993 Sep;103(1):73-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7516082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1995 May 19;268(5213):998-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7754395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Nov 11;22(22):4673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7984417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1994 Jul;10(7):923-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7985419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Feb 15;268(5):3099-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8428988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1993 Apr;13(4):2586-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8455631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 1996 Jan;3(1):74-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8548458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1996 Aug 20;35(33):10616-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8718850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1998 Jun;11(6):439-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9612942</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Michigan</li>
</region>
<settlement>
<li>East Lansing</li>
</settlement>
<orgName>
<li>Université d'État du Michigan</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Bucking, Heike" sort="Bucking, Heike" uniqKey="Bucking H" first="Heike" last="Bücking">Heike Bücking</name>
<name sortKey="Kasiborski, Beth" sort="Kasiborski, Beth" uniqKey="Kasiborski B" first="Beth" last="Kasiborski">Beth Kasiborski</name>
<name sortKey="Koul, Raman" sort="Koul, Raman" uniqKey="Koul R" first="Raman" last="Koul">Raman Koul</name>
<name sortKey="Lammers, Peter J" sort="Lammers, Peter J" uniqKey="Lammers P" first="Peter J" last="Lammers">Peter J. Lammers</name>
<name sortKey="Shachar Hill, Yair" sort="Shachar Hill, Yair" uniqKey="Shachar Hill Y" first="Yair" last="Shachar-Hill">Yair Shachar-Hill</name>
</noCountry>
<country name="États-Unis">
<region name="Michigan">
<name sortKey="Tian, Chunjie" sort="Tian, Chunjie" uniqKey="Tian C" first="Chunjie" last="Tian">Chunjie Tian</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002630 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002630 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20448102
   |texte=   Regulation of the nitrogen transfer pathway in the arbuscular mycorrhizal symbiosis: gene characterization and the coordination of expression with nitrogen flux.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20448102" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020